A INFLUÊNCIA DA MICROGEOMETRIA DO IMPLANTE NA OSSEOINTEGRAÇÃO - REVISÃO DE LITERATURA

THE INFLUENCE OF IMPLANT SURFACE OSSEOINTEGRATION LITERATURE REVIEW

JULIANA LUJAN BRUNETTO¹, AROLDO GERALDO MAGDALENA², JÉSSICA LEMOS GULINELLI³, LUCIANE SOLANGE AREVALO OSORIO⁴, THÉSSIO MINA VAGO⁵, PÂMELA LETÍCIA DOS SANTOS³*

1. Acadêmica do curso de Odontologia da Universidade do Sagrado Coração (USC) em Bauru/SP; 2. Mestre e Doutor em Química pelo Instituto de Química na Universidade do Estado de São Paulo (UNESP) de Araraquara/SP. Professor assistente Doutor 1 do Departamento de Química da Faculdade de Ciências da Universidade do Estado de São Paulo (UNESP) em Bauru/SP; 3. Mestre e Doutora em Cirurgia e Traumatologia Bucomaxilofacial na Universidade do Estado de São Paulo (UNESP) de Araçatuba/SP, professora do curso de Pós Graduação em Biologia Oral e Graduação em Odontologia na Universidade Sagrado Coração (USC) em Bauru/SP; 4. Mestranda em implantodontia da Universidade do Sagrado Coração – USC; 5. Doutorando em implantodontia da Universidade do Sagrado Coração – USC.

* Universidade do Sagrado Coração - Avenida Irmã Arminda 10-50, Bauru, São Paulo, Brazil. CEP: 17011-160. pamelalsantos@hotmail.com

Recebido em 25/10/2015. Aceito para publicação em 05/12/2015

RESUMO

As modificações nas superfícies dos implantes dentários são realizadas para melhorar suas propriedades físico-químicas, gerando nessa superfície maior rugosidade e aderência do coágulo sanguíneo e consequentemente uma diminuição no tempo da osseointegração. Assim, o objetivo desse trabalho foi realizar uma revisão literária sobre os variados tipos de superfícies de implantes e compará-los entre si. Para isto, foram selecionados 55 artigos entre os anos de 1987-2015, com critério de inclusão estar escritos na língua inglesa, portuguesa e espanhola. Foram abordadas as etapas fisiológicas da osseointegração, a geometria das roscas e a superfície dos implantes dentários. Na literatura observa-se que cada tratamento tem uma resposta biológica auxiliando individualmente cada caso clínico, sendo os tratamentos de subtração, como o condicionamento ácido, mais populares que os de tratamento por adição, como os recobertos com fosfato de cálcio Ca₃(PO₄)₂, e de combinação destes. Dessa forma foi possível concluir que as modificações das superfícies dos implantes são importantes, especialmente para pacientes com alterações sistêmicas que afetem a resposta biológica da osseointegração, pois essas modificações aprimoram a qualidade da interface osso/implante e reduz o tempo de reabilitação do paciente.

PALAVRAS-CHAVE: Implante dentário, Osseointegração, superfície, titânio.

ABSTRACT

The modifications to the surfaces of dental implants are performed to improve its physicochemical properties, this generating higher surface roughness and adhesion of the blood clot and therefore a decrease in the time of osseointegration. The objective of this study was to review the literature on the various types of implant surfaces and compare them with each other. For this, we selected 55 articles between the year 1987 to

2015, with inclusion criteria was being written in English, Portuguese and Spanish. Physiological stages of the osseointegration were addressed, the geometry of the screws and the surface of dental implants. In the literature it was observed that each treatment has a biological response individually assisting each clinical case, and the subtraction treatments such as acid etching, the more popular the treatment by adding, as coated with calcium phosphate Ca₃(PO₄)₂ and combination thereof. Thus it was concluded that the modification of the surfaces of implants are important, especially for patients with systemic changes that affect the biological response of osseointegration, because these changes improve the quality of the bone / implant interface and reduces the time of rehabilitation.

KEYWORDS: Dental implant, osseointegration, surface, titanium.

1. INTRODUÇÃO

A melhor forma de restabelecer a estética e a função mastigatória, atualmente, são com a utilização de próteses implantossuportadas¹. Para o sucesso das próteses implantossuportadas é necessário que ocorra a osseointegração, isto é, formação de tecido ósseo ao redor do implante². Esse fato está diretamente relacionado com a correta carga oclusal, material utilizado, desenho e superfície do implante, estabilidade primária e técnica cirúrgica³.

O titânio (Ti) e suas ligas estão sendo utilizados na área da implantodontia dental, pois apresentam alta biocompatibilidade, não demonstram reações alérgicas, mostra-se com uma elevada resistência á ionização, resistência à corrosão e baixa densidade⁴. É constatado que os implantes que se constituem de Ti, em sua maior proporção, têm significantemente uma melhor qualidade e quantidade óssea ao seu redor⁵.

ISSN online 2178-2571

Openly accessible at http://www.mastereditora.com.br/review

Entre os estudos já realizado com implantes de Ti comercialmente puro (TICP), Saini *et al.* (2015)⁶, relataram uma classificação com quatro níveis de oxigenação, onde o primeiro grau corresponde a uma presença de 0,18% de oxigênio (O₂) e o quarto grau apresenta 0,4%. Os resultados de ensaios mecânicos demonstraram que a resistência mecânica do Ti modificado por tratamento corrosivo de grau 4, TiG4, é maior do que os demais que estão à disposição para o consumo⁷.

Falco (2010)⁸, afirmou que os implantes usinados apresentam uma característica de direcionar o crescimento dos osteoblastos devido as suas ranhuras esterilizadas. Davies^{9,10} relata que a evolução da remodelação com implantes usinados é devida à melhora da retenção do coágulo sanguíneo, ao aumento da migração e proliferação celular e ao aumento da área da superfície do implante. Portanto, o Ti é considerado o implante do século XXI devido ao seu histórico de sucesso que comprova sua biocompatibilidade e propriedades mecânicas⁶.

Schliephake¹¹ e colaboradores realizaram um estudo *in vitro*, este demonstrou que o uso de oligonucleotídeos se ancora ao fator de crescimento vascular endotelial, sobre a superfície de Ti, pois, após uma semana em implantes TICP, 48% dos oligonucleotídeos estavam presentes⁵.

Atualmente diferentes métodos estão sendo utilizados para o tratamento de superfícies de implantes, como as técnicas de adição e subtração. Estas técnicas deixam as superfícies dos implantes com maior rugosidade, pois conferem alterações físico-químicas que ajudam na aderência do coágulo sanguíneo ao implante dentário. Além disso, aumentam o torque, possuem propriedades osteoindutoras e permitem a utilização de cargas imediatas em um curto prazo¹².

Tendo em vista a influência positiva da microgeometria do implante dentário no processo de reparo ósseo, este trabalho apresenta uma revisão de literatura sobre as principais superfícies dos implantes dentários com o objetivo de comparar a microgeometria dos implantes com a resposta biológica de osseointegração de cada tipo de modificação de superfície e verificar a importância dos diferentes tratamentos realizados nos implantes usinados.

2. MATERIAL E MÉTODOS

Para a identificação dos estudos inclusos nesta revisão, foi realizada uma estratégia de busca detalhada para a base de dado Medline (Pubmed), *Science Direct*, Scielo, Periódicos CAPES e Bireme nos anos de 1987-2015, dando preferência para os artigos mais atuais e sendo restrito para os escritos na língua inglesa, portuguesa e espanhola. Os seguintes descritores foram utilizados em diferentes combinações: "Dental implant", "Titanium commercially pure", "Titanium", "Surface properties",

"Osseointegration", "Implant surfaces", "Acid", "Ti6Al4V", "Hydroxyapatite", "Zirconium" e "Anode".

Os critérios de inclusão foram estudos de pesquisas científicas em animais, humanos e revisão sistemática. Já os critérios de exclusão foram casos clínicos. Após uma análise, segundo o critério de inclusão foram selecionados 55 artigos. Os dados foram analisados, cruzados e debatidos para a realização da redação com os resultados concludentes. (Figura 1).

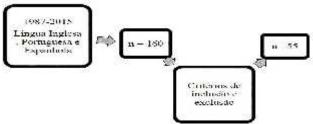


Figura 1. Fluxograma da metodologia. Fonte: Elaborado pela autora (2015)

3. RESULTADOS

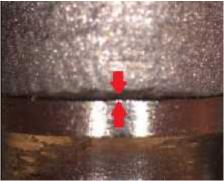
Osseointegração

Para que a osseointegração ocorra, algumas etapas devem ser fisiologicamente seguidas (Figura 2).

Figura 2. Fluxograma da osseointegração. Fonte: Elaborado pela autora (2015).

Logo após a inserção do implante no alvéolo, inicia-se a formação do coágulo sanguíneo substituindo a matriz provisória, e é a partir deste que células potencialmente osteogênicas irão migrar e alcançar a superfície do implante e/ou tecido ósseo. A superfície do implante é condicionada por proteínas séricas, íons minerais, glicosaminoglicanas, lipídeos e citocinas até o 4º dia, quando iniciará a formação do tecido de granulação^{9,13}.

Ocorrerá a migração de células mesenquimais indiferenciadas (CMI) e enquanto não estiverem secretando matriz óssea, as CMI migraram e se diferenciarão em osteoblastos. Então será formada uma rede de fibrina permitindo a migração de CMI, macrófagos, leucócitos, polimorfonucleares e células linfoides para ocorrer à diferenciação das células osteoblásticas⁹.


Após estas etapas, uma rede de fibrina criada anteriormente irá se retrair para favorecer a diferenciação osteoblástica, acontecendo uma degradação (fibrinólise) das fibras de colágeno e, para guiar a angiogênese, a formação de tecido conjuntivo frouxo9.

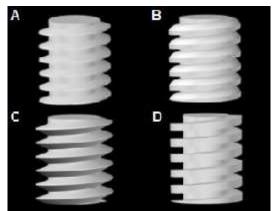
A deposição de matriz extracelular (MEC) se inicia após 1 semana. A matriz orgânica sem colágeno constituída por osteopontina e sialoproteína óssea, realiza a síntese de cristais de fosfato de cálcio e fibras colágenas realizando a deposição de íons de cálcio e fósforo na matriz orgânica realizando a calcificação da matriz óssea livre de colágeno. A MEC irá mineralizar e se apresentar com uma espessura de aproximadamente 0,5 micrômeros, essa será chamada de linha de cemento^{9,14}. Juntamente com a mineralização iniciará a osteogênese por contato e à distância (Figura 3).

As últimas fases da osseointegração ocorrerão na 6^a semana (maturação do tecido neoformado), 8^a e 12^a semanas (Remodelação óssea) que é responsável pela estabilidade do implante a longo prazo^{9,15}.

Figura 3. Na osteogênese á distância (seta verde) a neoformação de tecido ósseo inicia-se distante do implante e cresce em direção a este, enquanto que a osteogênese por contato (seta azul) inicia sua formação em contato com implante e cresce em direção ao tecido ósseo maturado. **Fonte:** Elaborado pela autora (2015).

Figura 4. Visualização do GAP (seta vermelha) na interface implante-intermediário. **Fonte:** Da Silva (2014)²¹.

Vários artigos demonstram que após um ano de sua osseointegração, os implantes que estão em função sofrem uma reabsorção óssea ao seu redor de aproximadamente 1,3 mm de largura e profundidade, iniciando a partir da linha de junção do intermediário e do implante propriamente dito (Figura 3-b). Este *GAP* criado fisiologicamente chama-se saucerização e pode ser encontrado, com esta medida, sempre que for considerado um sucesso^{16,17,18,19,20}.


Desenho Do Implante

Em relação ao seu desenho, os implantes são classificados em: rosqueados e não rosqueados (desuso) (Figura 5). Dentre os rosqueáveis, subdivide-se em cilíndricos, cônicos e cilíndricos-cônicos²². Sendo que o critério de escolha desses implantes rosqueáveis, depende de cada caso.

Figura 4. (a) Implantes com e sem rosca, cilíndricos com câmara. **Fonte:** Ogle (2015)¹⁹.

Os implantes de pressão, assim chamados por não possuírem rosca, estão em desuso, pois as roscas possibilitaram uma maior retenção do implante no tecido ósseo. Além desta classificação, as roscas possuem formatos próprios, podendo ser: trapezoidais, arredondadas, triangulares ou quadradas (Figura 6)²³. Como se pode observar na tabela 1, cada tipo de rosca tem sua indicação.

Figura 5. Geometria da rosca dos implantes. (A) rosca tipo trapezoidal, (B) rosca tipo arredondada, (C) rosca tipo triangular e (D) rosca tipo quadrada. **Fonte:** De Moraes *et al.* (2009)²⁴.

Há três parâmetros que devem ser comparados em relação ao desenho da rosca: passo, formato e profundidade. Os passos da rosca são divididos em contínuos e descontínuos (Figura 7), ou seja, quando o intervalo das roscas de cada implante formar um desenho igual ou parecido a um trapézio, este passo é considerado descontinuo e se formar um triângulo, então é considerado contínuo. De-

pendendo do formato da rosca, a direção da carga oclusal será transferida para diferentes direções no tecido ósseo

Tabela 1. Macroestrutura dos implantes.

				diametro da 10
Formato da rosca	Facilidade de inserção	Travamento do implante	Distribuição das forças	Indicações
Triangulares	Ótima	Regular	Regular	Osso tipo I
Quadradas	Regular	Ótimo	Ótima	Osso tipo III e IV
Trapezoidais	Boa	Bom	Boa	Osso tipo II
Arredondadas	Regular	Ótimo	Boa	Osso tipo III e IV

Fonte: Steigenga et al. (2003)²³.

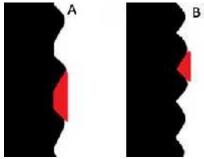
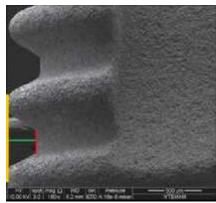



Figura 6. Passos da rosca do implante, (A) descontínuo e (B) contínuo. Fonte: Elaborado pela autora (2015).

Figura 7. Profundidade da rosca descontínua dos implantes (verde), diâmetro maior (amarelo) e diâmetro menor (vermelho). **Fonte:** Dolanmaz et al. (2014)²⁷.

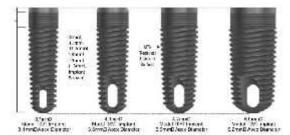


Figura 8. Diâmetro dos implantes. Fonte: Ogle (2015)¹⁹.

Ao compararmos uma rosca triangular e trapezoidal sob uma força de cisalhamento, estas têm um resultado semelhante, porém 10 vezes menor que a rosca quadrada.

A rosca quadrada possui uma área de superfície ótima para forças intrusivas e extrusivas tendo como efeito a redução de forças no osso ^{24,25,26}.

A profundidade é a distância entre o maior e o menor diâmetro da rosca (Figura 8) que normalmente se apre-

sentam uniformemente, mas podem variar dependendo da forma do implante²⁴. Antes de estudarem as roscas dos implantes, pesquisadores decidiram estudar a dissipação de forças em relação ao diâmetro destes. E foi descoberto que quando maior o diâmetro, melhor é distribuída a força realizada e menor é o

stress disseminado sobre o tecido ósseo, pois é distribuído em toda a área do implante¹⁹.

Na Figura 9 mostra uma comparação da diferença entre os diâmetros dos implantes mais vendidos no mercado.

Superfície Do Implante

Foi demonstrado que as dos implantes influenciam na resposta molecular dos tecidos e podem ser separadas em propriedades de superfície e de corpo. A composição, a topografia e o tipo de correlação com os tecidos são relacionados a estas respostas moleculares, que podem ocorrer a curto ou a longo prazo⁷.

O titânio é um material biomórfico, ele apresenta duas fases e . A fase é estável até a temperatura de 882,5°C e acima desta temperatura a fase torna-se estável. Os implantes de TICP são a escolha para a aplicação intraóssea devido à resistência ao ataque ácido, ao módulo de elasticidade compatível ao osso, espessura controlável além de, apresentar atividade catalítica para várias reações química²⁸.

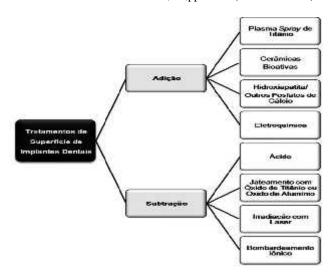
Em relação à composição do implante dentário, o Ti não é apresentado puro e sim na forma de ligas, principalmente com 6% de alumínio (Al), 4% de vanádio (V), 0,25% de ferro (Fe), 0,2% de oxigênio (O) e 90% de Ti, para formar a liga mais utilizada (α - β). Estas ligas são encontradas em três fases sendo eles: α , β e α - β , que são originados conforme a quantidade de Al e V, que são adicionados em Ti puro 19,6. A desvantagem do Ti, notória é a questão estética, pois sua cor acinzentada transpassa a mucosa queratinizada, quando não espessa 6.

Estudos demonstraram que dentre os aditivos, a alumina se destaca, devido à combinação de resistência à corrosão, biocompatibilidade, alta resistência ao desgaste, alta resistência mecânica à compressão e dureza²⁹.

O Al e o Fe são estabilizadores da fase alfa (α), pois aumentam a resistência e diminuem o peso da liga, já o V age como estabilizador de fase beta (β), diminuindo a concentração de alumínio e evitando a corrosão. Como as transições de fases são dependentes da composição química das ligas, torna-se necessário controlar a sua

composição para o domínio total de todas as propriedades, sejam elas físicas ou químicas. Para aumentar sua resistência, estas ligas podem ser submetidas a um tratamento térmico apropriado⁶.

As ligas metálicas biocompatíveis a base de Ti possuem alta resistência à corrosão, pois ao entrar em contato com tecido vivo é formada em sua superfície uma película de óxido de titânio (TiO₂) de aproximadamente 3 a 10 nm protegendo o metal e auxiliando na osteointegração. Porém a estabilidade dessa película depende da sua composição e espessura. É a partir dela que os implantes das ligas de Ti e TICP apresentam biocompatibilidade com a cavidade oral¹⁹.


Os implantes de Ti podem ser classificados de 1 a 4 dependendo do seu grau de pureza, resistência à corrosão, condutibilidade e força (resistência mecânica). O grau 1 é o mais puro da escala e que possui maior pureza e resistência à corrosão, mas oferecem menor força se comparados ao grau 4 (possui maleabilidade moderada e maior resistência), que atualmente são a matéria-prima da maioria dos implantes¹⁹.

A microgeometria do implante é um aspecto essencial a ser analisado, uma vez que tem influência comprovada na qualidade obtida da osseointegração, de acordo com o tipo de tratamento que o metal é submetido. As modificações na superfície do implante visam aprimorar a qualidade da interface osso/implante e do período não funcional do implante.

O ponto inicial de qualquer modificação de superfície é o implante usinado. Este deve apresentar propriedades mecânicas para dar suporte às modificações posteriores. Os usinados são implantes com menor custo e maior homogeneidade na usinagem, já os rugosos possuem uma maior área de superfície que se encontra tratada seja por condicionamento ácido, jateamento de óxido de titânio ou alumínio, irradiação de LASER, entre outros. As superfícies rugosas favorecem a retenção do coágulo, aumentam a migração celular, aumentam a resistência do torque de remoção e permitem a instalação de carga protética em um menor tempo³⁰.

Existem três tipos de tratamentos para modificar as superfícies dos implantes, estas são (Figura 10):

- A. Tratamento de superfície de implante por adição: aplica-se uma camada tratada sobre a superfície do corpo do implante.
- B. Tratamento de superfície de implantes por subtração: corpo do implante é exposto a materiais corrosivos que alteram a morfologia superficial, tais como abrasão por jateamento de partículas (TiO_2 Óxido de Titânio e Al_2O_3 Óxido de Alumínio) e por condicionamento ácido.
 - C. Combinações destes procedimentos.

Figura 9. Tipos de superfície de implantes. **Fonte:** Campos *et al.*, $(2012)^{31}$.

Atualmente existe uma ampla gama de implantes, dos mais variados formatos e tratamentos, por isso apenas os implantes mais estudados e comercializados serão relatados nesta revisão:

- A. Superfície usinada
- B. Superfície modificado por tratamento ácido
- C. Superfície modificado por feixe de laser
- D. Superfície anodizada
- E. TICP revestido com hidroxiapatita método biomimético
- F. Superfície revestida por zircônia
- G. Implante de titânio-zirconia (TIZR1317)

Superfície usinada

As superfícies usinadas, também podem ser denominadas de maquinadas ou lisas. A obtenção desse tipo de superfície ocorre por meio da usinagem simples de um bloco metálico, todavia, a superfície não exibe completa lisura, sendo a última nomenclatura (liso) não adequado.

As ranhuras superficiais são de grande importância para o processo de adesão celular e produção da matriz proteica, sendo uma das principais características desse tipo de superfície a osteogênese à distância³².

Na figura 11, pode-se observar um implante usinado com roscas arredondadas (A), sua superfície se apresenta com uma leve rugosidade (B, C e D). Com o intuito de melhorar a estabilização do implante e aumentar a área de contato superficial do implante com o hospedeiro modificações de superfícies foram propostas.

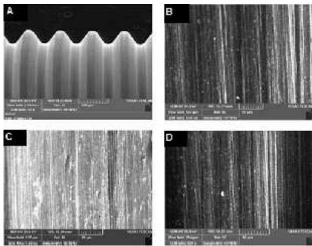
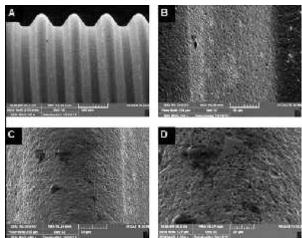



Figura 10. Superfície de TICP em aumento de (A) 50x, (B e C) 500x e (D) 1000x. Fonte: Da Paixão *et al.* (2013)²⁸.

A. Superfície modificada por tratamento ácido

O condicionamento ácido provoca corrosão nos implantes, provocando um aumento da rugosidade da superfície do implante (Figura 12). Quando o mesmo é tratado com diferentes concentrações de ácido e temperaturas, podem ser criados vários tamanhos de depressões que são facilmente padronizadas, por isso este método é muito utilizado em indústrias. A reação biológica dependerá do tratamento que o implante será submetido, sendo assim expostos a polissacarídeos, íons, hidratos de carbono, proteínas, condroblastos, fibroblastos e osteoblastos, que reagem com a superfície³³.

Figura 11. Superfície de titânio modificada por tratamento ácido em aumento de (A) 50x, (B e C) 500x e (D) 1000x. **Fonte:** Da Paixão *et al.* (2013)²⁸

Nos implantes tratados com ácido hidrofluorídrico ou ácido nítrico, são criadas microcavidades em sua superfície aumentando a rugosidade e consequentemente sua resistência (isto quando comparado aos implantes usinados), proporcionando uma osseointegração mais rápida, pois há o aumento das células aderidas e níveis de

expressão dos genes formadores ósseos, melhorando a biocompatibilidade deste com o organismo do receptor³⁴.

Os implantes que foram submetidos à jateamento e posterior ataque ácido, em sua superfície usinada, são conhecidos como SLActive (Figura 13). Estes implantes apresentam um desvio médio de uma superfície (S_a) de 1,75 μ m e, uma relação de área superficial (S_{dr}) de 143% e uma densidade de picos maior do que a dos implantes SLA³⁵.

Chambrone et al.³⁶ em 2014 verificaram que a superfície do implante SLActive, da marca Straumann AG, pode diminuir o tempo necessário para a osseointegração. Estes são feitos de titânio (grau 2) e produzidos igualmente, porém, o que difere é que são banhados em nitrogênio para evitar sua contaminação, deixando o implante com uma maior energia de superfície e uma superfície mais hidrofílica, o que facilita a reação dos osteoblastos fazendo sua resposta inicial seja mais rápida. São armazenados em tubos de vidro contendo uma solução de NaCl isotônico, selados.

Porém, quando os autores foram avaliar seus implantes, por meio de reabilitação do tipo protocolo com carga imediata, os resultados mostraram que não houve uma evidência clinicamente convincente de que ocorreu menor perda óssea e falha protética³⁶.

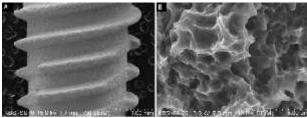
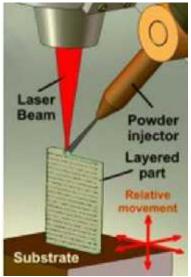


Figura 12. Implantes SLActive em aumento de 30x (A) e 10000x (B). Fonte: Lee et al. (2015)⁵.


B. Superfície modificada por feixe de laser

O tratamento de superfícies por irradiação por feixes de LASER (FL) possuem vantagens incluindo a não contaminação, alto grau de pureza, aumento do torque de remoção e o favorecimento da osseointegração devido à rugosidade¹².

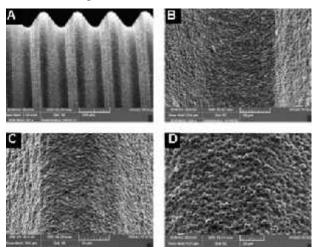
O tratamento por FL proporciona um aumento da área da microestrutura de superfície, na dureza, na resistência à corrosão, formação de óxidos e nitritos resultando em um aumento da biocompatibilidade do titânio, tornando a osseointegração mais rápida¹².

Diferentemente dos outros tipos de tratamento, este método produz uma superfície de implante mais pura e homogênea da área de tratamento com LASER Nd: YAG, aumentando a camada de óxido da superfície em relação aos usinados, em 157% de oxigênio na área e obtendo cavidades em torno de $25 \, \mu m^{35}$.

Quando os tratamentos por feixe de LASER e de HA são combinados, ocorre aumento da espessura de óxidos promovida pela irradiação com LASER, aumentando a união com a HA (depositada pelo método biomimético), devido à alta afinidade entre os óxidos de titânio e a HA¹².

Figura 13. Injeção de micropartículas envolvidas por feixe laser. **Fonte: Lusquiños** *et al.* (2014) 45.

Além disso, existe a técnica de revestimento de LA-SER com inserção de pó que é um processo de tratamento de superfície realizado para revestimentos com fosfato de cálcio e vidro bioativo na liga Ti-6Al-4V. Micropartículas do material precursor são injetados sobre um substrato envolvido pelo feixe de LASER (Figura 14). A radiação LASER de alta energia estacionária é dirigida à superfície do substrato aquecendo o local que o material precursor irá se depositar, realizando a fusão. A solidificação do substrato inicia-se quando o feixe LASER é retirado do local³⁷.


C. Superfície anodizada

Na anodização ou oxidação anódica o implante é colocado no ânodo de uma célula eletroquímica, ao gerar uma diferença de potencial, ocorrerá oxidação do implante, ocasionando a produção de uma camada fina, e isolante, de óxido de titânio na (TiO₂) na superfície do implante com alta dureza e resistência a corrosão³⁵.

Uma das técnicas para tratar a superfície de um implante TICP usinado é a anodização, que forma um filme de óxido poroso (Figura 15) podendo incorporar fósforo (P) ou cálcio (Ca) a camadas de óxido anódico. Assim, pesquisas têm relatado que a incorporação de Ca e P conduzem a um aumento da resposta celular quando comparado com os implantes jateados³⁸.

Ao utilizar um implante SLA para realizar a anodização cria-se um implante SLAffinity, ou seja, uma

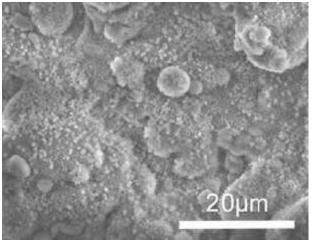

superfície com alta área de contato que pode favorecer a molhabilidade da superfície (devido ao SLA) com o TiO_2 em sua superfície³⁵.

Figura 14. Superfície de titânio anodizado em aumento de (A) 50x, (B e C) 500x e (D) 1000x. **Fonte:** Da Paixão et al. (2013) ²⁸.

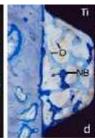
D. TICP revestido com hidroxiapatita – método biomimético

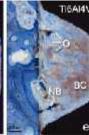
Superfícies com revestimento de hidroxiapatita (HA) como verificado na figura 16 são indicadas, pois apresenta uma similaridade com o tecido ósseo (fosfato de cálcio – CaP), ou seja, ao adicionar HA na superfície de um implante TICP, usinado, obtêm-se diversas vantagens como melhor fixação, alta biocompatibilidade, boas propriedades mecânicas e menor tempo de deposição óssea (por ser osteocondutora) ¹⁹. Isto ocorre, pois, os íons de cálcio (Ca) e de fosfato (P) são liberados após a dissolução da camada depositada do revestimento de HA pelo tecido vivo, se incorporando a microcristais de HA propiciando uma maior osteointegração ¹².

Figura 15. Imagem por MEV da superfície de implantes de HA. **Fonte:** Kato et al. (2015) ³⁸.

A aceleração da osteocondutividade auxilia na estabilidade inicial do implante e encurta o período inicial do tratamento. O Ti oferece suporte da carga por apresentar boa biocompatibilidade e alta resistência à fratura, mas não reage fisiologicamente com o tecido ósseo. Supõe-se que implantes de TICP revestimentos de HA aceleraram a aposição óssea, encurtando assim o período de espera para a restauração de implante dentário. Porém, estudos relatam que a sobrevivência desse implante é similar aos outros, mas a taxa de sucesso é significativamente menor do que a taxa de sobrevivência global¹².

Zhou (2011)³⁹ verificou a taxa de sobrevivência dos implantes por um período de 10 anos e o resultado obtido foi que a taxa de sobrevivência resultou em 87,39% em comparação a taxa de sucesso de 63,84%. Os implantes que estão dentro desses 64%, aproximadamente, foram clinicamente bem-sucedidos, pois osseointegraram em um curto período e sobreviveram, porém, não se pode considerar esta porcentagem como uma vitória.


Antigamente eram fabricados implantes com grande


espessura de HA na superfície, o que gerava um afrouxamento, diminuindo a taxa de sucesso em longo prazo.

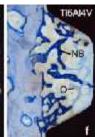


Figura 16. Secções histológicas delineadas pela superfície de implantes de TiZr, Ti e Ti6Al4V. **Fonte:** Saulacic *et al.* (2012) ⁴¹.

Porém hoje em dia a espessura do HA diminuiu para 1 mm reduzindo o risco de afrouxamento e aumentando a taxa de sucesso. É por esta e outras razões que o implante de TICP com superfície de HA de 1 mm é indicado para ossos tipo IV, locais recém-enxertados e de extrações recém-realizadas¹⁹.

E. Implante de zircônia

A Zircônia (Zr) é um composto "cerâmico" biocompatível e osteointegrável que possui três formas alotrópicas sendo elas: monoclínico (M), cúbico (C), e tetragonal (T). Em temperatura ambiente, a forma mais estável da Zircônia é a monoclínica. Para a formação da estrutura cúbica é necessário o aquecimento, deste material, até a temperatura em torno de 1170°C e acima de 2370°C a estrutura mais estável é a tetragonal. Em temperatura ambiente essas fases são instáveis e quebradiças. A estrutura cúbica da Zr pura pode ser estabilizada adicionando óxido de cálcio (CaO), óxido de magnésio (MgO) e óxido de ítrio (Y₂O₃), tendo como resultado um material multifásico (zircônia estabilizada - PSZ)^{19,6}.

É uma estrutura tetragonal é policristalina (TZP) e só pode ser obtida quando o Y₂O₃ é adicionado em temperatura ambiente, pois ele estabiliza o TZP. O Y₂O₃ possui

baixa porosidade, alta densidade, alta flexão e compressão⁶.

Durante a fabricação dos implantes de Zr seu processamento e composição não são informados, por isso ainda há dificuldade na avaliação da sua superfície, não há como afirmarmos que diferentes marcas comerciais seguem o mesmo padrão de fabricação. O Zr possui propriedades físicas favoráveis, como resistência à flexão (900-1200 MPa), dureza (1200 Vickers), baixo limiar de tensão e boa resistência à corrosão. Porém se compararmos os implantes de Zr com os de TICP, o segundo de grau 4 não sofrerá corrosão portanto não pode ser considerada uma vantagem do implante de Zr¹⁹.

F. Implante de titânio-zirconia (tizr1317)

Esse novo material binário tem uma estrutura monofásica com uma resistência de até 42% a mais⁴⁰, com 13% a 17% de zircônio (TiZr1317) ela possui maior elasticidade e resistência à fadiga que as superfícies de TICP usinados⁶.

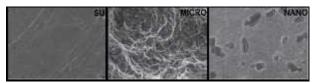
Na figura 17 pode-se observar na primeira semana (A, C, E) coágulo de sangue (BC) e osso recém-formado não mineralizado (O), enquanto que na segunda semana (B, D e F) tecido ósseo mineralizado (NB) está presente com osteoides cobrindo as superfícies dos implantes, com menos BC, matriz óssea recentemente mineralizada, e aumento de contato ósseo.

Esses implantes têm como principais indicações para substituição de implantes metálicos como o TICP para melhorar a estética anterior, aumento da rugosidade das superfícies e os benefícios no cisalhamento interfacial¹⁹.

4. DISCUSSÃO

Não é possível deduzir através de comparações científicas que determinada topografia possui melhores resultados que outra, na maioria das vezes o sucesso do caso será determinado pelo planejamento, tratamento, desenho protético e cooperação do paciente. Também não se pode comparar marcas comerciais de implantes, pois essas não possuem uma fórmula padronizada e seus fabricantes não disponibilizam claramente sua composição¹⁹.

Todavia, pode-se afirmar que entre os fatores relacionados ao sucesso e sobrevida dos implantes dentários, destaca-se o design e sua superfície. No que se referem ao design, as roscas dos implantes são essenciais, especialmente em ossos com menor densidade, visto que as roscas têm a função de maximizar o contato e travamento inicial, dissipar forças, contribuindo assim com a osseointegração e consequente aumento da sobrevida desses implantes²⁴. Somado a esses fatores, os implantes rosqueados, diminuem a reabsorção óssea com uma diferença de 22% na área total, quando comparado ao implante não rosqueado⁴². Todavia, ainda não existe um desenho de rosca ideal para todos os tipos ósseos, mas há as mais indicadas para cada tipo de osso.


Aliado ao design das roscas, outro fator que favorece a osseointegração é o tratamento da superfície do implante. A modificação da superfície do implante é importante, pois promove irregularidades das superfícies. Estas irregularidades facilitam a adesão do coagulo sanguíneo, favorecendo dessa forma a osseointegração e reduzindo o tempo de espera para a reabilitação protética do paciente¹⁹.

Os métodos de tratamento por subtração são os mais utilizados comercialmente. Dentre estes se destacam as superfícies submetidas a ataque ácido^{43,44}. No entanto, esse método não aumenta a rugosidade e não produz maior área de contato osso/implante do que a superfície tratada com LASER⁴⁵. Assim a maioria das empresas fabricantes de implantes utilizam a tecnologia de irradiação por feixe de LASER para a preparação de superfícies, pois este processo mantém um padrão de rugosidade na superfície do implante, proporciona um aumento da dureza, do torque de remoção e da resistência à corrosão na superfície do implante. Além de gerar um elevado grau de pureza e produzir uma camada espessa de óxido^{45,46,47}.

Em relação aos métodos de adição, ressalta-se as superfícies dos implantes recobertas com fosfato de cálcio $Ca_3(PO_4)_2$ no momento em que entram em contato com o tecido vivo, liberam íons de Ca^{2+} e $(PO_4)^{3-}$, esses interagem com microcristais de hidroxiapatita (HA), formando interação físico-química estável com os cristais da superfície do implante⁴⁸.

Salou *et al.* (2015)⁴⁹ em 2015 realizaram uma pesquisa adicionando implantes de titânio (figura 18): usinado (SU), jateado com alumina e posterior ataque ácido de alumina jateado com ácido (MICRO) e anodizados nanoestruturados (NANO). A conclusão foi que a superfície NANO teve o mesmo resultado que a MICRO, quando comparado à ancoragem óssea, e uma integração óssea maior, mas não significativa, que as outras duas superfícies.

Na Tabela 2 pode-se observar que os implantes cerâmicos como a zircônia exercem uma biocompatibilidade semelhante ao TICP e, possuem a vantagem de ser esteticamente favoráveis⁶, mas ao compararmos sua durabilidade e osseointegração, os implantes de Ti são mais apropriados, pois apresentam uma camada de TiO₂ que intensificam a osseointegração⁵.

Figura 17. Imagens feitas pelo microscópio eletrônico de varredura (MEV) são três tipos de superfície de titânio: usinado (SU), jateado com alumina e posterior ataque ácido (MICRO) e anodizados (NANO) em aumento de 10000x. **Fonte:** Salou *et al.* (2015) ⁴⁹.

Tabela 2. Comparação de superfícies dos implantes. REFERENCIAS SUPERFICES **WANTAGENS** DESVANTAGE:S Fesisente e un caso e LI (2016) RODS GUES also. TICF usingdo запаское ПО, ока а (2012) SAR etal (2015) 1017 BORGES(On 3); 04/MSPCHE train(004) Fac pedioneagă: : alta TOP+ ACIDO Conservations DOLARMAD state 2013; ruges dade 3B494ety, (2014) Formação do do dos o Conservanteda e cificil VERA::a.;201% TICP+LABER QUERCE;5010) patierizee: Caio moltomorto de TOP + CXIDAÇÃO K4T0ela, (2015) E4 succefic de fina camace de Corac reente da AXÁC BID. IZMO-SHOCICA Tio, Venories siênces Estático e resistência o call and although ZRCÓVIO COTOSAC lana 94.1.4006,707.8 Recister clara compaño E.P.S.415 (12015): THARK \$90,400 (XB); \$2.00e ritings CPa Cornerventude dinimatorostass dichts. Aumeritarolato, ede ZHOU et al (2011): Meno-box de subaced a

Fonte: Elaborado pela autora (2015).

enocă: e szecsard.ção

mpeta (Saiet)

TICP+ HEROXUPATED

Os implantes SLA reduzem a concentração de moléculas de carbono, titânio e nitrogênio aumentando as de oxigênio, resultando em uma menor chance de ocorrer à corrosão. Já o SLAffinity tem todos os benefícios do SLA mais os da anodização, esta superfície tem a vantagem de possuir uma camada de TiO₂ ³⁴, porém por se tratar de uma superfície nova, poucos trabalhos em longo prazo foram publicados. No estudo de Soballe (1993)⁵⁰ foram comparados os implantes SLActive, SLAffinitty e HA, este último apresentou maior contato ósseo, mas esta técnica entrou em desuso por apresentar sinais de reabsorção óssea. Atualmente a espessura da superfície de HA diminuiu para 1 mm¹⁹, mas sua indicação continua específica.

correctnessmooth

BUCHANEKetal (20.8)

Zhou *et al.* (2011)³⁹ em 2011 comprovaram histologicamente que em um período de 3 a 10 anos, os implantes de Ti que passaram por tratamento com HA tem uma sobrevivência semelhante aos outros implantes contudo as taxas de sucesso foram significativamente

menores do que as taxas de sobrevivência global. Kato, Yamada e Sakurai³⁸ em 2015 relataram que os implantes revestidos por HA sobreviveram mais na área molar superior do que os implantes com superfície anodizada por conta da superfície NANO.

Características das superfícies dos implantes dentários são aspectos que devem ser levados em consideração, pois estes exercerão um contato primário com o coágulo seguido da osseointegração e a sustentação da prótese¹⁹. Ao correlacionarmos a importância da rugosidade de superfície com a geometria das roscas foi verificado em ossos tipo I e II que o tratamento das superfícies se mostra favorável, porém não primordial¹⁹. O importante é saber distinguir a necessidade de cada caso.

Devido ao aumento da espectativa de vida, idosos são uma grande parte dos usuários de próteses implantossuportadas, porém estes frequentemente presentam problemas sistemicos que dificultam ou interferem na osseointegração como a osteoporose, hipertensão, diabetes e também doença periodontal progressiva^{51,52}. A resposta biológica do paciente estabelece a qualidade e a velocidade da osseointegração, a formação de uma interface osso-implante resistente a longo prazo é fortemente dependentes das propriedades físico-químicas da superfície do implante. Em pacientes tabagistas e etilistas o mesmo se repete ,assim faz-se necessário o uso de superfícies de implantes tratadas, para reduzir o tempo de reabilitação do paciente^{53,54,55}.

5. CONCLUSÃO

Os resultados da revisão de literatura mostraram que para obter sucesso na osseointegração e redução do tempo de reabilitação do paciente, a modificação da superfície do implante é fundamental. Especialmente, quando o paciente apresentar alguma alteração seja esta sistêmica e/ou de dependência, que afete a resposta biológica.

REFERÊNCIAS

- Senna P, Dodo CG, Sotto-Maior BS, Cury ADB. Caracterização da superfície do implante dental Titaoss. ImplantNews 2014; 11(1): 36-39.
- [2] Brånemark PI. Introducción a la oseointegración. En: Brånemark PI. Zarb G, Albrektsson T, eds. Prótesis Tejido-integradas. La Oseointegración en la Odontología Clínica. Barcelona: Quintessence SL; 1999. p. 11-76.
- [3] Li JY, Pow EHN, Zheng LW, Ma L, Kwong DLW, Cheung LK. Effects of Calcium Phosphate Nanocrystals on Osseointegration of Titanium Implant in Irradiated Bone. BioMed research international, 2015.
- [4] Pohler OE . Unalloyed titanium for implants in bone surgery. Injury 2000; 31: D7-D13.
- [5] Lee J, *et al.* Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: a pilot in vivo study. International journal of nanomedicine 2015; 10: 1145.
- [6] Saini M, et al. Implant biomaterials: A comprehensive re-

- view. World Journal of Clinical Cases: WJCC 2015; 3(1): 52
- [7] Elias CN, *et al.* Mechanical properties, surface morphology and stability of a modified commercially pure high strength titanium alloy for dental implants. Dental Materials 2015; 31(2): e1-e13.
- [8] Falco LA. Tipos de superfície dos implantes dentários. 2010. 45 f. Monografia (Especialização em Implantodontia) – Centro de Pós-Graduação Faisa-Ciodonto, Rio de Janeiro, 2010.
- [9] Davies DG, et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280(5361): 295-298.
- [10] Davies JE. Understanding peri-implant endosseous healing. Journal of dental education 2003; 67(8): 932-949.
- [11] Schliephake H, et al. Functionalization of titanium implants using a modular system for binding and release of VEGF enhances bone-implant contact in a rodent model. Journal of clinical periodontology 2015; 42(3): 302-310.
- [12] Queiroz TP. Estudo de implantes de Ticp com superfícies modificadas por feixe de LASER com e sem deposição química de apatitas: análises topográfica, biomecânica e histométrica em coelhos. 2010.
- [13] Vavasseur A, Raghavendra AS. Guard cell metabolism and CO2 sensing. New Phytologist 2015; 165(3): 665-682.
- [14] Brunski JB, JM Slack. "Orthodontic loading of implants: Biomechanical considerations." Orthodontic Applications Of Osseointegrated Implants, 2000.
- [15] Berglundh T, et al. De novo alveolar bone formation adjacent to endosseous implants. Clinical oral implants research 2003; 14(3): 251-262.
- [16] Consolaro A, et al. Mecanismo da saucerização nos implantes osseointegrados. Rev. dental press periodontia implantol 2010; 4(1): 37-54.
- [17] Verri FR, et al. Visão contemporânea do uso de implantes de conexão interna tipo Cone Morse. Rev. Odontol. Araçatuba 2012; 33(1): 49-53.
- [18] 18- Costa TZ, *et al.* IMPLANTE CARGA IMEDIATA: Uma Revisão de Literatura. Revista de Iniciação Científica da Universidade Vale do Rio Verde 2014; 4(1).
- [19] Ogle OE. Implant Surface Material, Design, and Osseointegration. Dental clinics of North America 2015; 59(2): 505-520.
- [20] Romanos GE, et al. Peri-implant diseases: a review of treatment interventions. Dental Clinics of North America 2015; 59(1): 157-178.
- [21] Da Silva, MTS M. Estudo in vitro da interface implante-pilar de estruturas para sobredentaduras, por microscopia ótica, com diferentes tipos de implantes. 2014. Dissertação (Mestrado em Medicina Dentária) Universidade Fernando Pessoa, Porto, 2014.
- [22] Viana VVC. Formas comerciais dos implantes dentários. 2010. Monografia (Especialização em Implantodontia) – Ciodonto, Rio de Janeiro, 2010.
- [23] Steigenga JT, et al. Dental implant design and its relationship to long-term implant success. Implant dentistry 2003; 12(4): 306-317.
- [24] De Moraes, SLD, et al. Geometria das roscas dos implantes: revisão de literatura. Rev. cir. traumatol. buco-maxilo-fac 2009; 9(2): 115-124.
- [25] Martínez-González JM, Cano Sánchez J. Campo Trapero J. Martínez-González MJS. García-Sabán F. Dental implants design: state or art. Advances en Periodoncia. 2002; 14(3): 129-136.
- [26] Gulati K, Kogawa M, Maher S, Atkins G, Findlay D, Losic

- D. Titania Nanotubes for Local Drug Delivery from Implant Surfaces. Electrochemically Engineered Nanoporous Materials Springer International Publishing. 2015; 307-355
- [27] Dolanmaz D, et al. Monitoring bone morphogenetic protei n-2 and-7, soluble receptor activator of nuclear factor- B ligand and osteoprotegerin levels in the peri-implant sulcular fluid during the osseointegration of hydrophilic-modified sandblasted acid-etched and sandblasted acid-etched surface dental implants. Journal of periodontal research 2015; 50(1): 62-73.
- [28] Da Paixão AH, et al. Análise topográfica das superfícies de implantes de titânio comercialmente puros: estudo por meio de microscopia eletrônica de varredura. Dent. press implantol 2013; 7(2): 49-58.
- [29] Rodrigues PL, et al. Efeito da adição de alumina nas propriedades físicas e mecânicas do -fosfato tricálcico (Effect of alumina addition on the physical and mechanical properties of-tricalcium phosphate). Cerâmica 2012; 58(1): 368-373.
- [30] Johansson C, Albrektsson T. Integration of screw implants in the rabbit: a 1-year follow-up of removal torque of titanium implants. The International journal of oral and maxillofacial implants 1986; 2(2): 69-75.
- [31] Campos PDSS, Faloni APDS, Margonar R, Faeda RS, Rastelli ANDS, Marcantonio E, Queiroz TP. Aspectos biológico-celulares da osseointegração baseados nos implantes dentários. ImplantNews 2012 9(3): 367-373.
- [32] Misch CE, Perel ML, Wang HL, Sammartino G, Galin-do-Moreno P, Trisi P, Valavanis DK. Implant success, survival, and failure: the International Congress of Oral Implantologists (ICOI) pisa consensus conference. Implant dentistry 2008; 17(1): 5-15.
- [33] Vieira RM, Namen FM, Galan Junior J. Caracterização das superfícies de implantes dentais comerciais em microscopia eletrônica de varredura: espectroscopia por energia dispersiva. RGO. Revista Gaúcha de Odontologia (Online) 2013; 61(1): 27-39.
- [34] Canavez CD. Tipos de tratamentos de superfícies no implante dental. 2013. Monografia (Especialização em Implantodontia) - FUNORTE/SOEBRÁS NÚCLEO, Paraná, 2013.
- [35] Borges PB. Tratamento da superfície de implantes.2013. Monografia (Especialização em Prótese Dentária) - Universidade Federal de Minas Gerais (UFMG), Minas Gerais, 2013.
- [36] Chambrone L, et al. "Review found little difference between sandblasted and acid-etched (SLA) dental implants and modified surface (SLActive) implants." 2014.
- [37] Lusquiños F, et al. Bioceramic 3D Implants Produced by Laser Assisted Additive Manufacturing. Physics Procedia 2014; 56: 309-316.
- [38] Kato E, Yamada M, Sakurai K. Retrospective clinical outcome of nanopolymorphic crystalline hydroxyapatite-coated and anodic oxidized titanium implants for 10 years. Journal of prosthodontic research 2015; 59(1): 62-70.
- [39] Zhou W, et al. Long-term survivability of hydroxyapatite-coated implants: a meta-analysis. Oral Surgery 2011; 4(1): 2-7.
- [40] 40- Bernhard N, et al. "The binary TiZr alloy—A newly developed Ti alloy for use in dental implants." Forum Implantol. 2009; 5: 30-39.
- [41] Saulacic N, et al. Bone apposition to a titanium-zirconium alloy implant, as compared to two other titanium-containing implants. Eur Cell Mater 2012; 23(1): 273-286.

- [42] Quirynen M, Naert IV, Steenberghe D. Fixture design and overload influence marginal bone loss and future success in the Brånemark® system. Clinical oral implants research 1992; 3(3): 104-111.
- [43] Fernandes EL, et al. Primary stability of turned and acid-etched screw-type implants: a removal torque and histomorphometric study in rabbits. The International journal of oral and maxillofacial implants. 2007; 22(6): 886.
- [44] Bugea C, *et al.* Bone contact around osseointegrated implants: histologic analysis of a dual-acid-etched surface implant in a diabetic patient. The International journal of periodontics and restorative dentistry 2008; 28(2): 145-151.
- [45] Rong M, et al. The early osseointegration of the laser-treated and acid-etched dental implants surface: an experimental study in rabbits. Journal of Materials Science: Materials in Medicine 2009; 20(8): 1721-1728.
- [46] Gaggl A, *et al.* Scanning electron microscopical analysis of laser-treated titanium implant surfaces—a comparative study. Biomaterials 2000; 21(10): 1067-1073.
- [47] Bereznai M, *et al.* Surface modifications induced by ns and sub-ps excimer laser pulses on titanium implant material. Biomaterials 2003; 24(23): 4197-4203.
- [48] Cook SD, et al. Interface mechanics and histology of titanium and hydroxyapatite-coated titanium for dental implant applications. Int J Oral Maxillofac Implants 1987; 2(1): 15-22.
- [49] Salou L, et al. Enhanced osseointegration of titanium implants with nanostructured surfaces: An experimental study in rabbits. Acta biomaterialia 2015; 11: 494-502.
- [50] Soballe K, et al. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. Journal of Bone and Joint Surgery, British Volume 1993; 75(2): 270-278.
- [51] De Alencar CRB, De Andrade FJP, Catao MHCV. Cirurgia oral em pacientes idosos: considerações clínicas, cirúrgicas e avaliação de riscos. RSBO (Online), 2011; 8(2): 200-210.
- [52] Renon MA, et al. Toro palatino e mandibular. RGO (Porto Alegre) 1994; 42(3): 176-8.
- [53] Gennaro G, *et al.* Assessment of new bone formation around titanium surface treated implants in diabetic rats. RGO 2013; 61(2): 213-19.
- [54] Zareidoost A, et al. The relationship of surface roughness and cell response of chemical surface modification of titanium. Journal of Materials Science: Materials in Medicine 2012; 23(6): 1479-1488.